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The Large Underground Xenon Experiment (LUX)
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LUX 2014-16 Run

Data-taking from September 2014 - August 2016
WIMP Search includes 332 live-days of data, fiducial volume of = 100 kg

LUX has launched many calibration campaigns, in order to measure our detector
response to nuclear and electronic recaoils.
o Examples for Electron Recoils (ER): ®*™Kr, CH,T, *C, *'™Xe

Varying drift field in the detector, due to charges getting caught on the Teflon walls
o Recently published paper with an in-depth description of how we modeled the
electric field: JINST 12 P11022



Energy Partitioning in Xenon
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Energy Partitioning in Xenon

e Can calculate the energy of a recoil from the S1 and S2 signals:

Photon work function:
W = (13.7 £ 0.2) eV/quanta
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S2 gain:
g, = 20 photoelectrons/electron

S1 gain:
g, = 0.1 photoelectrons/photon



Energy Partitioning in Xenon

Define mean light and charge yields using the Gaussian means of the S1 and S2
distributions:

p, = {ron g, = {2

Can calculate recombination probability, as well. We take N, /N, = 0.2 to be
constant with energy, consistent with measurements

_ {npn)/(ne) — Nea/Ni
(r) =
(npn)/(ne) +1
Recombination is a statistical process, so there are fluctuations in how many
light/charge quanta are produced. Measure the size of these fluctuations by finding
the total width and subtracting detector resolution effects:
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Recombination

e Recombination fluctuations cause S1 + S2 signals to smear out
o Below: 8MKr calibration data (two-step 41.55 keV recoil) from 2014-09
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Recombination

e Charge-to-light ratio is different for electron recoils vs. nuclear recoils — discriminate
o Atright: “bands” of ER and NR events; fluctuations give the ER band its width

e Goal: Measure recombination and light/charge yields as a function of E-field
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Electric field variation in LUX
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In the 2014-16 run of LUX, we had a non-uniform drift field in the liquid phase
Field lines are not parallel, so S2-based position reconstruction is incorrect
We constructed a model of the LUX electric field, represented by “maps”:
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Electric field variation in LUX

e %MKris an excellent calibration source to study E-field, injected ~weekly
o Decays via two conversion electrons, giving a 32.1 + 9.4 = 41.5 keV recaoll
o Half-life of 1.8 hours, so it mixes uniformly within the detector volume (on a timescale of a

few minutes) before decaying
Field value interpolated from model,

drift time [us]
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Yields

Separate 83MKr data into
bins based on E-field
magnitude at each event
location

Within each bin, measure
mean S1 and S2 — get
light and charge yields,
recombination probability,
and recombination
fluctuations

At right: measured yields.
Calculated separately;
naturally add to 73
quanta/keV at all fields
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Recombination Probability ) = ey () + 1
a= excitons ions
83mKr (41.55 keV)
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Recombination Fluctuations o= [(q) +(Z

83mKr (41.55 keV)
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Summary + future work

Energy partitioning in xenon is important for understanding xenon microphysics,
calibrating our detector, and ER/NR discrimination
LUX can be used to measure yields and recombination parameters as a function of
electric drift field
Future work:

o Use 13'MXe data for the same purpose. It is higher energy (163.9 keV), so we

should be able to see the behavior of these quantities as r — 0.5

o More careful study of systematic uncertainties
Bigger picture: Understanding xenon physics at different fields can inform future liquid
xenon experiments
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